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D=k — 55 ) Vorig 64
The dissipative function (3, 3) corresponds to the Mises plasticity condition, The plas-

ticity Hmit can be expressed by means of given concentrations and plasticity limits of

each component, In the case of a two~component medium the plasticity limit is calcu~

lated by means of the formula cacs (ky — Fa)?

k== cakr o+ ook — Tk T ook 3.5)
where o, ¢, k;, k4 are the concentrations and plasticity limits of the corresponding com-

ponents,
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Orthogonality relationships are derived for the extended eigenvectors of problems on the
deformation of a strip, a circular rectangie and the axisymmetric deformation of a ¢y~
linder under homogeneous boundary conditions in the displacements,

The problem of the sirnultaneous decomposition of the boundary conditions given on
parts of the surface of an elastic body into a series of nonorthogenal homogeneous solu~
tions fs solved only for certain classical problems for definite combinations of the bound-
ary conditions, In the case of the plane problem of the theory of elasticity for a suip,
such decompositions are realizable because of the generalized orthogonality relationship
of papkovich [1—4], A similar relationship for the axisymmetric problem of a cylinder
is obtained in [5] and generalized in [6], However, the mentioned orthogonality relation-
ships do not allow satisfaction of arbitrary boundary conditions exactly on all surfaces
of an elastic body of finite size,

Of interest in this respect are the orthogonality relationships of extended eigenvectors
of boundary value problems, The elasticity theory equations admit the non-unique con-
struction of such vectors, Thus, Little and Childs [7, 8] construct a system of extended
eigenvectors which are orthogonal to the vectors of the conjugate problems, The authors
called such orthogonality relationships biorthogonality,

The method developped in [9], which permits construction of a system of extended
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eigenvectors satisfying the self-adjoint differential equations and hence possessing the
orthogonality property, is more natural and general, This method also yields a non-unique
solution (the authors of the method did not use the best), however, only systems of such
vectors whose projections correspond to combinations of quantities prescribed on the
boundary (displacements, normal and shear stresses) are of practical interest,

Precisely such systems of extended vectors are constructed below by the Fliigge-Kelkar
method for three two-dimensional problems of elasticity theory, Since the method men-
tioned proceeds from the displacements equations, the case of homogeneous boundary
conditions in displacements is simplest, and is indeed examined. However, the method
can be extended also to the case of homogeneous force conditions,

1, Strip, Let us examine a strip whose longitudinal edges are fixed
u=yp=0 for ym=-1 1.1

The initial equations in displacements for the plane state of stress are written as
u 0%u Ay 8o - v
2m-5:—,+(m-1)-5§;+(m+1) W-o, 2m—gy-z-+(m—1) E’—"-
*u
+(m+1)m=0 (1.2)
Here u, v are the projections of the displacements on the z, y axes, respectively, m

is the Poisson's ratio, Let us seek the solution of (1, 2) in the form

a=|r )=t rw=]19]

Substituting (1, 3) into (1, 2) yields a relationship to find the vectors £ (y)
t" = ALiY’ 4 A%La} (1.4)
Here L; and L, are the matrices
0 LD , Le =“ m® 0 “
Y 0 0 15

m+41 m41
lﬂ(t)= mii ’ l!l(i) = 2-’}’: 1

1.3)

L1=ﬂ

—2m 1—m
11 = — 1 = 7

and the prime denotes differentiation with respect to y. The vector £ (y) should satisfy
the homogeneous boundary conditions (1,1), The boundary value problem (1,4),(1.1)
generates an infinite system of eigenvectors (*)

T (U, h) f kW ;'k) . N
) = . k=0,4,2...
e e hk (v, l'k) ¢ 0
corresponding to the eigenvalues A,of the parameter A, the roots of the equation
3m—1

—m—sin2ki-22,=0

The system of eigenvectors Ex{y, Ax) does not possess the orthogonality property in the
interval (-1, 1),

Corresponding to the displacement vector (1, 3), which now becomes

*) The kind of eigenvectors of the problems considered here ‘can be found in [, 9, 10},
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[~}
Y
u=Y O e < (1.5)
Ke=0
are the stresses
1 e = 1 S A
—c, = 2 CyBy () & oL Ty = Z Cyrx () e o
B k= B =0
Here 9
S ="m—1 (b — mhyfy), Te=1y — My (1.8)
Let us construct the system of extended vectors
EW | _n P “
z R nw | MW=1sw @n
(the subscript & has been omitted), Let us find the additional vector 1 (y) from the
conditions t =Pt 4+ Quny W =8 (1.8)

Here P, Q, S are 2 X 2 mauices linearly dependent on A.
Let us note that according to conditions (1, 8) we can write
n=Q¥ —QP} 1.9)

The superscript ~1 denotes the inverse matrix,

Let us require that the elements of the vector n (y) , the functions p (y), g (¥) ,corre~
spond to combinations of conditions assigned on the strip boundarfes z = const (displa-
cements, their derivatives with respect to y, normal and shear stresses), Then there
necessarily results from (1, 9)

P=APy, Q=Q, S=28

The matrices p,, Q,, S, are independent of A. Substituting (1. 8), (1. 9) into (1.4)
yields a system of equations to find the matrices P, Q,, S,. We have

P14+ QSiQt — L1 =0, QS1Q P14+ La =0 1.10)
The matrices

0 —1 -1 0 o_ m=1
Py 1 of Q= 0 gu®|’ I =

are the solution of Eqgs, (1.10),
We now have according to (1. 6), (1. 7), (1. 9

Pk(y)="fkl—l' h afk_sz’ 4.44)

2 4
qk(y) me—1 (h —xxfk)"sx“l'zh

As follows from (1. 8), the extended vectors (1. 7) satisfy the equations of the following
boundary value problem:

z’ = Az + ABz, Mz (+1) =0 (1.12)
Here A, B, M are the matrices
1000
0100
° Q& o on = 1.13)
A’“OOH’ B“'uo sslr M=loooo (

0000
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Let us show that the problem (1,12) is self-adjoint, To do this it is necessary [11] that
there exist a nondegenerate transformation

we=Tz (1.44
which will transform the conjugate boundary value problem
W = — A*w — AB*W, Nw(+1) =0 (1.15)

into that under investigation (1,12). The superscript * denotes the transpose of the
martrix,
This requirement yields three equations

TA4+A*T=0, TB-+B*T=0, MT'M*=0 {1.46)
The matrix
0 0~1 ¢
00 0~
10 0 0
014 0 0

is the simplest solution of the system (1,186),

Let us find the orthogonality reiationship of the vectors z,(y). By multiplying (1,12)
for the vector z,by the vector w,,* on the left, and the transposed equation (1.15) for
Wmby z, on the right, adding, and integrating the result between -1 and 1, we substitute
the transformation (1.14), We obtain .

(=2, S 2 TBz, dy = [25Tz, 1!
—t

Taking account of (1, 7),(1.11) and the boundary conditions (1.1}, we have the ortho-

gonality relationship for the vectors z; (y)
1

Q z:nRzn dy =0, nzEm 147
4
Here R is the weight matrix
0 01
0 04 0
R==TB = 0—1 0 0
1 0 00

Expanding the relationship (1,17) by using (1. 3), (1. 11), we write it in the different
form 1
§ U=ty 1o = bt =y motm .18
The orthogonality relationships (1.17), (1. 18) permits finding the coefficients of the
decomposition of the arbitrary vector z,

20* =70 (), Bo (¥), Po(y), G0 (3) |
in a series in the extended vectors

[+
2= Cyz, ()
1 i Fmesg) 1
Ce="g, S (oS — Tohy + 1130 — Tubp) dy, Gy =2 S (F Sy — Txhy) dy
-1 1
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Here Gy are normalizing factors,

2. Circular rectangle, Let us consider the deformation of a circular rectan-
gle whose arc edges are fixed
u=p=0 forp=a, p=21b (2.1)

Here u, v are the projections of the displacement vector on the axes of the polar
coordinates p, ¢ , respectively,

Let us transform to the new coordinate

p i e
tmlngm astsn ("=Tln’5’)

The equations in displacements for the plane state of stress become

i i & d
2ma—;—+(m-—l) 89_7‘: —2mu+(m+i)--5%?;-—(3m-—1)-£~=0

. 2.2)
v o o%u du
2mw+(m—1)—§=— —(m——1)v+(m+1)—m +(3m—1)—3-6—==0
let us seek the solution of (2, 2) in the form
= u Ao 1) 2.3
u v“sg(t)e , E(t)‘uh(t) (2.3)
Substituting (2, 3) into (2. 2) yields a relationship to find the vector § (f)
3* = MLig’ + MLt + ALek + Lad 2.4y
(1) Li® 0 0 ¥
Ly= 0 he » Le =“ " @l Ls= i @
™ 0 0 ¥ In 0
W omtl  pwamtt e iom
- ﬁ { 0“ 2m m— m
= ! —2m 1—3m @ __3dm—1
01} ln(ﬂ) — — , 112(3) = 5= ' I' = -;-':—1—

The primes denote differentiation with respect to ¢.
The vector § (¢) should satisfy the boundary conditions (2, 1) besides the Eq, (2.4).
The boundary value problem (2.1), (2. 14) has an infinite system of nonorthogonal eigen-

vectors felt, M)“
R (¢, M)
corresponding to the eigenvalues A, of the parameter A, the roots of the equation
(m 4 1) (A* 4 1)sh32h + (3m — 1)2 sh2 (Ai + 1)hsh2 (M — )b =0 (2.5)
Corresponding to the displacement vector (2, 3) which now becomes

(k=0,1,2...)

Bk (L, ’vk)u“

o0 le
u= D Cifx(t)e

k=0
are the stresses
o Ao ‘ o0 Ay
—-1-P3¢ = Z Cesktye ©, — P = 2 Cati(t) e (2.8)
w ) “ k=0

Let us construct the system of extended vectors of the problem, Omitting calculations
analogous to those presented in the problem for the strip, let us.write the result



Extended orthogonality relationships in elasticity theory 907

2x* = fx, By, Pk, 2kl (k=m0 1,2...) (2.7
where in the notation (2, 6)
2m
= 2 __(f;’ — Aighy) == 2f’
P = ——= (i’ + fx —Mihx) =0k + 2/ 2.8)
gk = — by’ — Ry — hyfy =1 — 2k’

It is easy to verify that the vectors zy (t) satisfy the self-adjoint differential equation

and boundary conditions »* = Az 4 ABz, Mz (4-h) =0 2.9)
Here A, B, M are the matrices (a;5 = 1/, (m — 1)/m)
—4 0 a3 O 0414 00 1000
0—-1 0 —1 -1 0 0 O 0100
A=l 0701 of Bl 00 01| M=Joooo
0 00 1 v 0—~1 O 0000
The orthogonality relationship of the vector zj (t) is
A 0 0 01
Sz:.Rz,,d: =0 awm, R=|g [T o (2.40)
—h £ 000
Decomposing the relationship (2.10) by using (2, 7), (2. 8), we obtain
h
{ (mTo— 0mho + futm — Subm) dt =0 (nofem) 249)

—~h
Utilizing the orthogonality relationship (2, 11), we find the coefficients of the expan-
sion of the arbitraty vector Ze __ 1 7o (£), o (£), Po (8), 20 () |

in a series of eigenvectors of the problem (2, 9)

- h
Zo = Eckzk ), Cip= -(ka. S (7ofk—aohk+fk;o— szo) dt

k=0

Here Gy are the normalizing factors
h

Gp=2 S (fxvk — Okhy) dt
—h

8, Cylinder [9]. Let us examine the axisymmetric deformation of a hollow cir~

cular cylinder with axis = whose side surfaces r= b, r = a (¢ > b) are fixed
u=v=0 for r=g, r=1»% (3.1»

Here u, v are projections of the displacement vector u on the axis of the cylindrical
z, r coordinates, respectively,

In this case the equations in displacements are

m—2 (3u 4 du m-—13u ,B 1 /0% 1 v

T (w Ta—r')+—m ‘a?i“"‘z‘(_azar'*’Té?)"o a2
ia'u +m—1 &y 100 +m-—26‘v=0 )
2 dzor T(b‘?z' T 2] T2m ozt

Setting
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=g (r)e §(")==E“r) y

hr)
we obtain the egquation

(r§)" == ALiE' + A%Laf + Mo + L}

(3.3
(1) @ (®
Lywr 0 I ) Lg::rlu 0 L= 0 I ’ LA=“1“§0 Oﬂ
v 0 Y 8 0 F g0 4
Ll o ARSI @ n2m=t e, m—2
= a—z " TTm=1 & Fpny wETEETD
¥ =2

which, together with the boundary conditions (3, 1), generates the system of eigenvectors
£ () , nonorthogonal in the interval (b, a) . Now

® B W

U aa 2 Cxde(Me (3-4y
K

The stresses

1 o g < “Me®
= Gemm E Cyog{rie °, e Tppms 2 Cyex(rye
i -y B k=g

2 i
= B X he -t = 1 - il
" ——-—E[k"' — hi { ).lkfk], Tg = fx’ = hghp

cotrespond to the displacements (3, 4),
A system of extended vectors

2* (7) = fx, By, 7 (T —2fx"), PO+ 20 | (k=0 1,3,

L) {3.5)
satisfying the seif-adjoint differential equation
0 0-—1 0 0—10 0 )
' (0—1 0 mu £ 00 o -l
=10 0 0 0 |*™™o oo0—1|* ™ I@m=D 3.6)
o 0 0 1 0 04 0
and the boundary condition
EO a 10
0 0’(b)“’°' E'—"'Hota
can be constructed by the method elucidated in Sect, 1,
The orthogonality relationship 100 0t
2. . 0 0—10
S"‘“‘m”'”o (nzem),  R=}, , 4o @D
’ £ 0 00
is conserved far the vector (3. 5).
Expanding the relationship (3. 7) by using (3. 5), we obtain
a4
§(fmcn —t b 4f 0, —th )rdr=0, ngm 3.8

The coefficients of the expansion



of the arbitrary vector
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-
z, = 2‘ Cy2y (1)
k=0

Zo* = | fo (), Fo(r), Bo(r), 4o (M)

are found because of the relationship (3. 8) from

a
1 ¢- - -
Crp= G, S(fock — Tohy + 1480 — Ty r dr
b

where @, are normalizing factors

10,

11,

G, =2 § (40 — Tchy) rdr
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